NPR: A Couple’s Quest To Stop A Rare Disease Before It Takes One Of Them


by Rae Ellen Bichell

In 2010, Sonia Vallabh watched her mom, Kamni Vallabh, die in a really horrible way.

First, her mom’s memory started to go, then she lost the ability to reason. Sonia says it was like watching someone get unplugged from the world. By the end, it was as if she was stuck between being awake and asleep. She was confused and uncomfortable all the time.

“Even when awake, was she fully or was she really? And when asleep, was she really asleep?” says Sonia.

The smart, warm, artistic Kamni – just 51 years old — was disappearing into profound dementia.

“I think until you’ve seen it, it’s hard to actually imagine what it is for a person to be alive and their body is moving around, but their brain is not there anymore,” says Eric Minikel, Sonia’s husband.

In less than a year, Sonia’s mom died.

An autopsy showed Kamni had died from something rare — a prion disease. Specifically, one called fatal familial insomnia because in some patients it steals the ability to fall asleep.

Basically, certain molecules had started clumping together in Kamni’s brain, killing her brain cells. It was all because of one tiny error in her DNA — an “A” where there was supposed to be a “G,” a single typo in a manuscript of 6 billion letters.

Sonia sent a sample of her own blood to a lab, where a test confirmed she inherited the same mutation. The finding threw the family into grief all over again.

“But that grieving period sort of started to resolve within about a week or so,” she says. “And we weren’t in crisis anymore. We were finding our way toward a new normal, where this was something that we were going to have to live with and deal with and learn more about.”

Today, Sonia and her husband live and work in Cambridge, Mass., where they are both doctoral students in the lab of Stuart Schreiber, a Harvard professor of chemistry and chemical biology. Over the past several years, the couple has completely redirected their careers and their lives toward this single goal: to prevent prion disease from ever making Sonia sick.

The two wear bright colors and laugh easily. When they answer my questions, they look at each other instead of at me. They like complicated board games, urban walks and efficient cooking. They are thinkers and problem solvers, which is why, when Sonia got her genetic test results, it changed everything.

The change

“It didn’t happen all at once,” Sonia says. “There wasn’t a day when we woke up and said, ‘OK let’s change everything about our lives.'”

At the time, Sonia, who has a Harvard law degree, had just started a new job as a legal consultant. Eric was a transportation analyst.

But they couldn’t stop thinking about Sonia’s test result. They started researching prion diseases online, and invited over friends who are biologists and chemists, to help them understand the science.

“And around that time,” Sonia says, “we both enrolled in night classes as well,” in subjects like biology and neuroscience.

They were hungry to learn more as quickly as possible; the night classes weren’t enough.

“I was basically fresh out of law school and started walking into classes at MIT during the day because this was kind of all I could think about,” says Sonia, who at the time wore sneakers every day so that she could rush between work, classes, and a neuroscience lab at Massachusetts General Hospital. She’d started volunteering there, thanks to a professor from one of her classes, and mentors in the lab who helped her learn everything from how to use a pipette to how to work with human brain cells.

“And from there, this is where things happened surprisingly quickly,” Sonia says.

 

Eric and Sonia prepare materials for an experiment measuring prion protein in spinal fluid. They’re both third-year Harvard graduate students doing research at the Broad Institute in Cambridge, Mass.

Kayana Szymczak for NPR

The couple started a nonprofit, Prion Alliance, in hopes of raising money for research. Sonia left her legal job to work in the Mass General lab full-time as a technician. Then, Eric left his job and joined a genetics lab, applying his skills in coding to analyzing genetic data, rather than transportation data.

“I was getting left behind!” he says. “Sonia was out there doing all this science. It was her day job now and I was still in my old career and, you know, it was a good job and all, it was meaningful, but it wasn’t the mission that it was increasingly clear that we were going to be on.”

Just months after they’d finished grad school in law and urban planning, the pair went back to graduate school, this time in biomedical sciences — to study prion diseases.

“You are talking to two third-year graduate students,” says Eric.

Life as scientists

The two now share an office and a lab bench, under Schreiber’s supervision, at the Broad Institute of MIT and Harvard.

“There’s a date in the future when Sonia will get the first dose of the drug that’s going to save her life,” Eric says. “What can I do today that brings that date closer to the present?”

A posted printout of an email says: “Let’s just blast forward and solve problems as they become real and as they need immediate solutions.” It’s a note Schreiber sent the pair at one point when they were worrying about bureaucratic hoops they had to jump through.

“I thought it was a good philosophy, so we printed it out and put it on the wall,” says Eric.

Sonia and Eric are “the best of humanity” Schreiber tells Shots. “Their story is, of course, remarkable, and they personify the concept of patient–scientists. But their deep understanding of science and ability to innovate and execute on one of the hardest challenges in biomedical science are breathtaking.”

Schreiber says that his lab, like many others in biomedicine, has long included researchers who are physicians as well as scientists; that dual training and experience brings an important perspective to the research, he says.

“But the last decade has seen the emergence of patient–scientists — including Sonia and Eric, but also others in my lab,” he says. “And this has had an even greater impact on the lab. They remind us of our mission — to understand and treat human disease.”

Still, it’s really hard to cure diseases — especially conditions like this one, because the usual way scientists look for a treatment isn’t going to work.

Sonia is 33 years old. On average, people with the kind of genetic mutation she has usually start to show symptoms at age 50. But they could surface at any time. Symptoms of fatal familial insomnia have set in as early as age 12 and as late as 84. Once they do, it’s a rapid decline — like Alzheimer’s disease on fast-forward.

“You’re healthy, you’re healthy, you’re healthy and then you’re falling off a cliff,” says Sonia. “You wait a little bit too long, and that patient is gone. We need to get out ahead of it — aggressively.”

The challenge

They need to keep Sonia from getting sick in the first place. And they need to do it quickly. But right now, Sonia appears to be just fine, and that’s actually one of the first obstacles.

Across medicine, there is an understandable resistance to testing experimental drugs on healthy people. That’s why, traditionally, drug trials go something like this: Take a group of people who are sick, give some of them an experimental medicine, and wait to see if it makes them get better, live longer, or decline more slowly than people who didn’t get the drug.

But Sonia has to convince the medical establishment that, especially in the age of genetics, some people who seem perfectly healthy should be considered patients.

Continue reading this story at the source.

Filed Under: Insights, Patient Stories

Tags:,

Speak Your Mind

*