RARE Webinar: Precision Medicine

Thursday, June 11, 2019
Dawn Laney, MS, CGC, CCRC
Assistant Professor/Genetic Counselor
Emory School of Medicine, Department of Human Genetics

Robert Hopkin, MD
Associate Professor of Clinical Pediatrics
Cincinnati Children’s Hospital Medical Center

Torsten Haferlach
Prof. Dr. med, Dr. Phil
MLL Munich Leukemia Laboratory

Moderated By:
Danny Levine
Levine Media Group
Dawn Laney, MS, CGC, CCRC
Assistant Professor/Genetic Counselor
Emory School of Medicine, Department of Human Genetics
Disclosures

Dawn Jacob Laney, MS, CGC, CCRC has disclosed that she has received honoraria and research funding as an investigator, researcher, speaker, board member registries/coordinator for Sanofi Genzyme; has received research funding and honoraria as an investigator, speaker, coordinator for Amicus and Shire, now part of Takeda; and is a co-founder and has stock options for ThinkGenetic, Inc.
Agenda

• Define precision medicine
• Discuss the goal of precision medicine in rare disease
• Review the role of genetics in precision medicine
• Barriers to precision medicine in rare disease
• Successes of precision medicine in rare disease
Precision Medicine

Identifying which treatment and dose will be most effective to treat a medical issue based on genetic, environmental, metabolic, and lifestyle factors.

https://visual.ly/community/infographic/health/we-are-all-zebras-how-rare-disease-shaping-future-healthcare
Precision vs. Personalized Medicine

National Cancer Institute: www.cancer.gov

Precision Medicine: The Goal

- Genetics (Genome)
- Patient Grouping
- Clinical trials
- Disease (Patient Doctor)
- Environment/Lifestyle
- Medication (Data)

RIGHT DRUG
RIGHT DOSE
RIGHT TIME
Genetics and Precision Medicine

https://www.undiagnosed.org.uk/support_information/what-is-exome-and-genome-sequencing/

https://www.my46.org/intro/whole-genome-and-exome-sequencing
Interpretation: Where The Rubber Hits The Road

- Did the doctor sending it in provide enough information about signs and symptoms?
- Do other relatives with the same variant have the same symptoms?
- Is a change already associated with health issues or treatment response?
- What research is available about this change and its impact on disease or treatment?
- What has changed in our genomic understanding since the LAST interpretation of these genetic findings?
Road Map: Precision Medicine in Rare Disease

1. Doctor reviews diagnosis and clinical history.
2. Determine if any genetic data supports a specific monitoring or treatment group.
3. Orders and/or reviews Genetic/Genomic testing.
5. Monitor treatment effectiveness and revise plan as needed.

GlobalGenes.org | #CareAboutRare
HELPING Precision Medicine in Rare Diseases

- Active patient support and advocacy groups
- Collaboration between patients, health professionals, researching, and pharmaceuticals.
- Rare disease registries providing additional information
- Seeking other genomic changes that impact outcomes and treatment
- Already precedent of FDA approval of specific treatment options within a subgroup of a rare disease population
Barriers To Precision Medicine In Rare Disease

- Access to testing: genomes and exomes are expensive and insurance often doesn’t cover them
- Not enough data about genetic variation and impact in treatment of rare diseases
- Some subgroups are so small it is hard to have clinical trials with enough power to be statistically significant
- It may be difficult to interest pharmaceuticals in developing a medication for a tiny subset of a rare disease
For Precision Medicine To Succeed Everyone Needs To Participate

• All of Us program
• Condition specific registries
• Participation in genomic/genetic substudies for therapy trials
• Patient advocacy involvement in designing studies and FDA process
Don’t Believe ALL the Hype

http://thedayexplorer.co.uk/

https://moneyweek.com/486743/genome-the-pharmas-making-pills-tailored-to-your-genes/
RARE Disease SUCCESS STORIES
Questions?

Contact Information:
Dawn.laney@emory.edu

My Family Tree
Fabry Disease

Robert Hopkin
Cincinnati Children’s Hospital
Medical Center

Rob.Hopkin@cchmc.org
Presentation

• New born female with prenatal onset severe hydrocephaly
• Also has trachea-esophageal fistula and laryngeal cleft type 3, vascular ring with compression of the trachea, Fusion of ribs 8-9, and 14 pairs of ribs

• Initial evaluation failed to reveal a cause for the malformations
• She required multiple surgeries for examples:
 • Shunt placement
 • TEF and laryngeal cleft repair
 • G-tube placement
 • Repair of vascular ring
Presentation

• Developed multiple additional problems
 • Neurogenic bladder
 • Chronic pancreatitis
 • Developmental disability
 • Vocal cord paralysis
 • Post Traumatic stress
 • Chronic headaches
Genetic testing

- Chromosomes normal
- SNP microarray – Loss of heterozygosity on chromosome 3 (nonspecific abnormality that may or may not be associated with any problems)

- She is 19 years old and still without a diagnosis. She has a boyfriend. She and her parents are worried about her future and risks for any children she may have.
What do we know?
What do we need to know?
Is there a reason to do additional testing?
Test options

• Single gene disorders
 • Need to have a solid idea what you are looking for and only a few possible genes to consider

• Panel that is focused on particular problems
 • More genes but in this case you have brain malformation, heart malformation, laryngotracheal malformation, which do you choose?

• Whole exome or whole genome sequence
 • Just look at everything
 • Looking for any of literally billions of possible changes and there is a lot of normal variability
Whole Exome results

• RESULTS SUMMARY: Uncertain
• 1. Probable Disease Causing Variants or Variants of Unknown Significance Related to the Patient's Phenotype:
 • No variants were found in this category.
• 2. Additional Variants of Interest:
 • Heterozygous for c.1748G>A (p.Ser583Asn) in CHD7
• 3. Additional Medically Actionable Findings:
 • Heterozygous for c.1087C>T (p.Arg363Cys) in GLA
Who understands this and knows exactly what to tell the family?
Key points

• No diagnosis for the birth defects was found.

• The CHD7 mutation is shared with the mother
 • It should be autosomal dominant so the fact that her mother doesn’t have any disease is very important
 • This is likely to be a benign variant

• The GLA mutation is from her father
 • This is on the X-chromosome, so the father is at higher risk than his daughter.
 • This variant has been associated with a relatively late onset condition called Fabry disease. In adult men that can lead to heart disease, stroke, and / or kidney failure.
 • The risk is higher for men than women, but both can be affected.
So, now what?

• What does this mean for our patient?

• Is it important for her father?
Fabry disease

• Comes in 2 categories
 • Classical early on set disease usually severe untreated has life expectancy around 50 years and first symptoms in childhood
 • Non-classical highly variable symptom onset from early adulthood to 80s
 • Often only one body system with obvious problems, most frequently heart disease
Resolution

- The father is at highest risk for progressive heart disease with NONCLASSICAL Fabry disease
 - His mutation is predicted to respond to a newly approved oral chaperone therapy, but it has only been available for about a year. The standard option of IV infusion of the missing enzyme every 2 weeks could also be used.
 - He opted to be treated with the oral medication to prevent future heart or kidney disease.

- The daughter has many health problems but no abnormality typically seen in Fabry disease.
 - With the mutation she has many women will never become ill.
 - Those who have symptoms may develop heart disease in the 6th or 7th decade of life.
 - She opted for monitoring over time with no immediate intervention, but will need to have annual check ups and a heart evaluation every couple of few years. (she already needed that for her heart defect.)
Take home points

• We have many new powerful methods for making diagnosis of genetic disease
• Even the best most powerful tools we have are not completely successful (we currently can’t resolve about 30%)
• We may find unexpected risks that have important medical implications
• Families can manage this uncertainty well if we can help them understand it
Take home points

• By considering the details of findings in the context of the patient’s life we can modify treatment decisions even for rare disease
• Different management decisions may be used even for the same diagnosis
• Sometimes you need to consult with experts especially for rare or very rare conditions.
Acute Myeloid Leukemia with *FLT3* Mutation

Torsten Haferlach
MLL Munich Leukemia Laboratory
Case Report

• 62 year old man visited GP with fatigue and fever
• Blood counts:
 • Leukocytes 50 G/L (normal 4-10 G/L)
 • Hemoglobin 9 g/dl (normal 12-16 g/dl)
 • Platelets 80 G/L (normal 150 – 350 G/L)
• Transfer to hematologist, initiated in detail analyses of peripheral blood and bone marrow aspirate and biopsy
• Diagnosis: Acute Myeloid Leukemia (AML) with normal karyotype (46, XY) and with FLT3-ITD mutation, NPM1 not mutated
• 3 days later: patient sent to specialized clinic for start of treatment; Goal: CURE!
Table 1. (continued)
Acute myeloid leukemia (AML) and related neoplasms

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Cytogenetic Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML with recurrent genetic abnormalities</td>
<td></td>
</tr>
<tr>
<td>AML with t(8;21)(q22;q22.1); RUNX1-RUNXI1</td>
<td></td>
</tr>
<tr>
<td>AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBF-B-MYH11</td>
<td></td>
</tr>
<tr>
<td>APL with PML-RARA</td>
<td></td>
</tr>
<tr>
<td>AML with t(9;11)(p21.3;q23.3); MLL3-KMT2A</td>
<td></td>
</tr>
<tr>
<td>AML with t(6;9)(p23;q34.1); DEK-NUP214</td>
<td></td>
</tr>
<tr>
<td>AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2; MECOM</td>
<td></td>
</tr>
<tr>
<td>AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1</td>
<td>Provisional entity: AML with BCR-ABL1</td>
</tr>
<tr>
<td>AML with mutated NPM1</td>
<td></td>
</tr>
<tr>
<td>AML with biallelic mutations of CEBPA</td>
<td>Provisional entity: AML with mutated RUNX1</td>
</tr>
<tr>
<td>AML with myelodysplasia-related changes</td>
<td></td>
</tr>
<tr>
<td>Therapy-related myeloid neoplasms</td>
<td></td>
</tr>
<tr>
<td>AML, NOS</td>
<td></td>
</tr>
<tr>
<td>AML with minimal differentiation</td>
<td></td>
</tr>
<tr>
<td>AML without maturation</td>
<td></td>
</tr>
<tr>
<td>AML with maturation</td>
<td></td>
</tr>
<tr>
<td>Acute myelomonocytic leukemia</td>
<td></td>
</tr>
<tr>
<td>Acute monocytic/monozytic leukemia</td>
<td></td>
</tr>
<tr>
<td>Pure erythroid leukemia</td>
<td></td>
</tr>
<tr>
<td>Acute megakaryoblastic leukemia</td>
<td></td>
</tr>
<tr>
<td>Acute basophilic leukemia</td>
<td></td>
</tr>
<tr>
<td>Acute panmyelosis with myelofibrosis</td>
<td></td>
</tr>
<tr>
<td>Myeloid sarcoma</td>
<td></td>
</tr>
<tr>
<td>Myeloid proliferations related to Down syndrome</td>
<td></td>
</tr>
<tr>
<td>Transient abnormal myelopoiesis (TAM)</td>
<td></td>
</tr>
<tr>
<td>Myeloid leukemia associated with Down syndrome</td>
<td></td>
</tr>
</tbody>
</table>

Table 18. Cytogenetic abnormalities sufficient to diagnose AML with myelodysplasia-related changes when ≥20% PB or BM blasts are present and prior therapy has been excluded

<table>
<thead>
<tr>
<th>Cytogenetic abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex karyotype (3 or more abnormalities)</td>
</tr>
<tr>
<td>Unbalanced abnormalities</td>
</tr>
<tr>
<td>−7/del(7q)</td>
</tr>
<tr>
<td>del(5q)/t(5q)</td>
</tr>
<tr>
<td>i(17q)/t(17p)</td>
</tr>
<tr>
<td>−13/del(13q)</td>
</tr>
<tr>
<td>del(11q)</td>
</tr>
<tr>
<td>del(12p)/t(12p)</td>
</tr>
<tr>
<td>idic(X)(q13)</td>
</tr>
<tr>
<td>Balanced abnormalities</td>
</tr>
<tr>
<td>t(11;16)(q23.3;p13.3)</td>
</tr>
<tr>
<td>t(3;21)(q26.2;q22.1)</td>
</tr>
<tr>
<td>t(1;3)(p36.3;q21.2)</td>
</tr>
<tr>
<td>t(2;11)(p21;q23.3)</td>
</tr>
<tr>
<td>t(5;12)(q32;p13.2)</td>
</tr>
<tr>
<td>t(5;7)(q32;q11.2)</td>
</tr>
<tr>
<td>t(5;17)(q32;p13.2)</td>
</tr>
<tr>
<td>t(5;10)(q32;q21.2)</td>
</tr>
<tr>
<td>t(3;5)(q25.3;q35.1)</td>
</tr>
</tbody>
</table>

D. A. Arber et al., Blood, 127, 2391-2405, 2016
Table 5. 2017 ELN risk stratification by genetics

<table>
<thead>
<tr>
<th>Risk category*</th>
<th>Genetic abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>t(8;21)(q22;q22.1); RUNX1-RUNX1T1
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
Mutated NPM1 without FLT3-ITD or with FLT3-ITD low†
Biallelic mutated CEBPA</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Mutated NPM1 and FLT3-ITD high†
Wild-type NPM1 without FLT3-ITD or with FLT3-ITD low† (without adverse-risk genetic lesions)
t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡
Cytogenetic abnormalities not classified as favorable or adverse</td>
</tr>
<tr>
<td>Adverse</td>
<td>t(6;9)(p23;q34.1); DEK-NUP214
t(v;11q23.3); KMT2A rearranged
t(9;22)(q34.1;q11.2); BCR-ABL1
inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)−5 or del(5q); −7; −17/abn(17p)
Complex karyotype,§ monosomal karyotype
Wild-type NPM1 and FLT3-ITD high†
Mutated RUNX1¶
Mutated ASXL1¶
Mutated TP53#</td>
</tr>
</tbody>
</table>

* *FLT3-ITD* low
Ratio <0.5
FLT3-ITD high
Ratio ≥0.5
Molecular markers = targets in AML

TCGA, NEJM, 368, 2059-2074, 2013
FLT3 - Inhibitors

P. P. Zarrinkar et al., Blood, 114, 2984-2992, 2009
AML tested for **FLT3-ITD + NPM1** (n=3.941; Age median = 68.4 range 18 - 100)

- **FLT3-ITD+ & NPM1+**
 - n=397 (10%)
- **FLT3-ITD+ & NPM1-**
 - n=320 (8%)
- **FLT3-ITD- & NPM1+**
 - n=592 (15%)
- **FLT3-ITD- & NPM1-**
 - n=2,632 (67%)
FLT3-ITD in relapsed AML (n=431; median = 63.5; range 19 - 85)

- **Primary diagnosis FLT3-ITD+**
 - n=161

- **Primary diagnosis FLT3-ITD-**
 - n=270

- **Relapse FLT3-ITD+**
 - n=124
 - **Relapse FLT3-ITD-**
 - n=37
 - **Relapse FLT3-ITD+**
 - n=35
 - **FLT3-ITD-**
 - n=235

Status – Shift for FLT3-ITD: 17% of patients

MLL Data August 2005 - September 2018
FLT3-TKD in relapsed AML (n=320; median = 63.1; range 19 - 85)

Primary diagnosis FLT3-TKD+ n=30

Relapse FLT3-TKD+ n=7

Relapse FLT3-TKD- n=23

Primary diagnosis FLT3-TKD- n=290

Relapse FLT3-TKD+ n=8

FLT3-TKD- n=282
<table>
<thead>
<tr>
<th>Treatment Strategies</th>
<th>Treatment Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML ≥60 y (See NCCN Guidelines for Older Adult Oncology)</td>
<td>Standard-dose cytarabine 200 mg/m² continuous infusion x 7 days with daunorubicin 60 mg/m² x 3 days and gemtuzumab ozogamicin 3 mg/m² (up to one 4.5 mg vial) on days 1, 4, and 7 (CD3-positive)³⁰</td>
</tr>
<tr>
<td>Intermediate-risk cytogenetics</td>
<td>Standard-dose cytarabine (100–200 mg/m² continuous infusion x 7 days) withidarubicin 12 mg/m² or daunorubicin 60–90 mg/m² x 3 days ormitoxantrone 12 mg/m² x 3 days</td>
</tr>
<tr>
<td>Intermediate-risk cytogenetics and FLT3 mutant</td>
<td>Standard-dose cytarabine 200 mg/m² continuous infusion x 7 days with daunorubicin 60 mg/m² x 3 days and oral midostaurin 50 mg every 12 hours, days 8–21⁴⁴,⁴⁵</td>
</tr>
<tr>
<td>Therapy-related AML, Antecedent MDS/CML, Cytogenetic changes consistent with MDS (AML-MRC)</td>
<td>Dual-drug liposomal encapsulation of daunorubicin 44 mg/m² and cytarabine 100 mg/m² IV over 90 min on days 1, 3, and 5 x 1 cycle (category 1) orStandard-dose cytarabine (100–200 mg/m² continuous infusion x 7 days) withidarubicin 12 mg/m² or daunorubicin 60–90 mg/m² x 3 days ormitoxantrone 12 mg/m² x 3 days</td>
</tr>
<tr>
<td>Unfavorable-risk cytogenetics (exclusive of AML-MRC)</td>
<td>Venetoclax once a day (100 mg d1, 200 mg d2, 400 mg d3 and beyond) and intravenous decitabine 20 mg/m² [days 1-5 of each 28-day cycle]⁵⁵,⁶⁶,⁶⁷ orVenetoclax once a day (100 mg d1, 200 mg d2, 400 mg d3 and beyond) and subcutaneous or intravenous azacitidine 75 mg/m² [days 1-7 of each 28-day cycle]⁵⁵,⁶⁶,⁶⁷ orVenetoclax once a day (100 mg d1, 200 mg d2, 400 mg d3 and 600 mg d4 and beyond) and subcutaneous low-dose cytarabine 20 mg/m²/day [days 1-10 of each 28-day cycle]⁵⁵,⁶⁶,⁶⁷ orLow-intensity therapy (azacitidine, decitabine)⁶⁶,⁶⁷ orStandard-dose cytarabine (100–200 mg/m² continuous infusion x 7 days) withidarubicin 12 mg/m² or daunorubicin 60–90 mg/m² x 3 days ormitoxantrone 12 mg/m² x 3 days</td>
</tr>
<tr>
<td>Other recommended regimens for intermediate- or poor-risk disease</td>
<td>Standard-dose cytarabine (100–200 mg/m² continuous infusion x 7 days) withidarubicin 12 mg/m² or daunorubicin 60–90 mg/m² x 3 days ormitoxantrone 12 mg/m² x 3 days</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of FLT3 inhibitors currently in clinical development.

<table>
<thead>
<tr>
<th>FLT3 inhibitor</th>
<th>Non-FLT3 targets</th>
<th>FLT3-TKD mutation activity</th>
<th>Single-agent CRc rates in R/R FLT3-mutated AML</th>
<th>Dose</th>
<th>Major toxicities</th>
<th>Approval status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>c-KIT, PDGFR, RAF, VEGFR</td>
<td>No</td>
<td><10%</td>
<td>400 mg bid</td>
<td>Rash, hemorrhage, myelosuppression</td>
<td>Available off-label [US FDA approved for hepatocellular, renal cell, and differentiated thyroid cancer]</td>
</tr>
<tr>
<td>Midostaurin</td>
<td>c-KIT, PKC, PDGFR, VEGFR</td>
<td>Yes</td>
<td><10%</td>
<td>50 mg bid</td>
<td>GI toxicity, myelosuppression</td>
<td>US FDA and EMA approved for adults with newly diagnosed FLT3-mutated AML in combination with intensive chemotherapy [improves overall survival versus chemotherapy alone]</td>
</tr>
<tr>
<td>Quizartinib</td>
<td>c-KIT, PDGFR, RET</td>
<td>No</td>
<td>24–47%</td>
<td>30–60 mg daily</td>
<td>QTc prolongation, myelosuppression</td>
<td>US FDA approval sought for use in relapsed/refractory setting [improves overall survival versus chemotherapy]</td>
</tr>
<tr>
<td>Crenolanib</td>
<td>PDGFR</td>
<td>Yes</td>
<td>17–39%</td>
<td>100 mg tid</td>
<td>GI toxicity</td>
<td>Drug development plan is focused on chemotherapy-based combination</td>
</tr>
<tr>
<td>Gilteritinib</td>
<td>AXL</td>
<td>Yes</td>
<td>37–41%</td>
<td>120 mg daily</td>
<td>Elevated transaminases, diarrhea</td>
<td>US FDA approved for adults with relapsed/refractory FLT3-mutated AML [full data not yet released]</td>
</tr>
</tbody>
</table>
Conclusions

- Diagnosis of leukemia needs cytogenetics and molecular genetics.
- Targeted treatment is possible.
- Transplant strategies follow biology of AML at diagnosis and treatment response (MRD).
- At relapse all diagnostic methods should be repeated.
- CURE is possible!
Submit Your Questions

To send in questions, please use WebEx’s Q&A feature in the bottom right hand corner
Thank You Panelists

Dawn Laney, MS, CGC, CCRC
Assistant Professor/Genetic Counselor
Emory School of Medicine, Department of Human Genetics

Robert Hopkin, MD
Associate Professor of Clinical Pediatrics
Cincinnati Children’s Hospital Medical Center

Torsten Haferlach
Prof. Dr. med, Dr. Phil
MLL Munich Leukemia Laboratory
September 18 - 20, 2019
Sheraton San Diego Hotel and Marina
San Diego, CA